1 |
DAC 2024
|
RL-PTQ: RL-based Mixed Precision Quantization for Hybrid Vision Transformers
Eunji Kwon, M. Zhou, W. Xu, T. Rosing and S. Kang
|
Link
PDF
Slide
|
2 |
DATE 2023
|
Mobile Accelerator Exploiting Sparsity of Multi-Heads, Lines, and Blocks in Transformers in Computer Vision
Eunji Kwon, H. Song, J. Park and S. Kang
|
Link
PDF
Slide
|
3 |
DAC 2020
|
Late Breaking Results : Reinforcement Learning-based Power Management Policy for Mobile Device Systems
Eunji Kwon, S. Han, Y. Park, Y. H. Kim and S. Kang
|
Link
PDF
Slide
|
4 |
DATE 2024
|
ViT-ToGo : Vision Transformer Accelerator with Grouped Token Pruning
S. Lee, K. Cho, Eunji Kwon, S. Park, S. Kim and S. Kang
|
Link
|
5 |
DATE 2023
|
FPGA-Based Accelerator for Rank-Enhanced and Highly-Pruned Block-Circulant Neural Networks
H. Song, J. Yoon, D. Kim, Eunji Kwon,and S. Kang
|
Link
|
6 |
ACCV 2022
|
Adaptive FSP : Adaptive Architecture Search with Filter Shape Pruning
A. Kim, S. Lee, Eunji Kwon,and S. Kang
|
Link
|
7 |
DATE 2021
|
Approach to Improve the Performance using Bit-level Sparsity in Neural Networks
Y. Kang, Eunji Kwon, S. Lee, Y. Byun, Y. Lee and S. Kang
|
|
8 |
DATE 2021
|
MDARTS : Multi-objective Differentiable Neural Architecture Search
S.Kim, H.Kwon, Eunji Kwon, Y.Choi, T.Oh and S. Kang
|
|
9 |
ISLPED 2020
|
GRLC: Grid-based Run-length Compression for Energy-efficient CNN Accelerator
Y. Park, Y. Kang, S.Kim, Eunji Kwon, and S. Kang
|
|
10 |
DATE 2020
|
Analysis and Solution of CNN Accuracy Reduction over Channel Loop Tiling
for IoT Devices
Y. Kang, Y. Park, S. Kim, Eunji Kwon, T. Lim, S. Oh, M. Woo and S. Kang
|
|